Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Surface Functional Groups and Graphitization Degree of Soot in the Sooting History of Methane Premixed Flame

2017-03-28
2017-01-1003
The evolution of surface functional groups (SFGs) and the graphitization degree of soot generated in premixed methane flames are studied and the correlation between them is discussed. Test soot samples were obtained from an optimized thermophoretic sampling system and probe sampling system. The SFGs of soot were determined by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) after removing the soluble impurities from the soot samples, while the graphitization degree of soot was characterized by Raman spectrum and electron energy loss spectroscopy (EELS). The results reveal that the number of aliphatic C-H groups and C=O groups shows an initial increase and then decrease in the sooting history. The large amount of aliphatic C-H groups and small amount of aromatic C-H groups in the early stage of the soot mass growth process indicate that aliphatic C-H groups make a major contribution to the early stage of soot mass growth.
Technical Paper

Effects of Lubricating Oil Metallic Content on Morphology, Nanostructure and Graphitization Degree of Diesel Engine Exhaust Particles

2017-03-28
2017-01-1009
In this paper, the influences of metallic content of lubricating oils on diesel particles were investigated. Three lubricating oils with different levels of metallic content were used in a 2.22 Liter, two cylinders, four stroke, and direct injection diesel engine. 4.0 wt. % and 8 wt. % antioxidant and corrosion inhibitor (T202) were added into baseline lubricating oil to improve the performance respectively. Primary particle diameter distributions and particle nanostructure were compared and analyzed by Transmission Electron Microscope. The graphitization degrees of diesel particles from different lubricating oils were analyzed by Raman spectroscopy. Conclusions drawn from the experiments indicate that the metallic content increases the primary particles diameter at 1600 rpm and 2200 rpm. The primary particles diameter ranges from 5 nm to 65 nm and the distribution conformed to Gaussian distribution.
Technical Paper

Pressure Drop and Soot Regeneration Characteristics through Hexagonal and Square Cell Diesel Particulate Filters

2017-03-28
2017-01-0979
Although diesel engines have higher output torque, lower fuel consumption, and lower HC pollutant emissions, larger amounts of NOx and PM are emitted, compared with equivalent gasoline engines. The diesel particulate filters (DPF) have proved one of the most promising aftertreatment technologies due to the more stringent particulate matters (PM) regulations. In this study, the computational fluid dynamics (CFD) model of DPF was built by utilizing AVL-Fire software code. The main objective of this paper was to investigate the pressure drop and soot regeneration characteristics of hexagonal and conventional square cell DPFs with various inlet mass flow rates, inlet temperatures, cell densities, soot loads and ash loads. Different cell geometry shapes of DPF were evaluated under various ash distribution types.
Technical Paper

Pressure Drop and Soot Accumulation Characteristics through Diesel Particulate Filters Considering Various Soot and Ash Distribution Types

2017-03-28
2017-01-0959
Although diesel engines offer higher thermal efficiency and lower fuel consumption, larger amounts of Particulate Matters (PM) are emitted in comparison with gasoline engines. The Diesel Particulate Filters (DPF) have proved one of the most promising technologies due to the “particle number” emissions regulations. In this study, the Computational Fluid Dynamics (CFD) multi-channel model of DPF was built properly by utilizing AVL-Fire software code to evaluate the pressure drop and soot accumulation characteristics of DPF. The main objective of this paper was to investigate the effects of soot (capacity and deposit forms) and ash (capacity and distribution factors) interaction on DPF pressure drop and soot accumulation, as well as the effects of DPF boundary conditions (inlet mass flow rate and inlet temperature) on pressure drop.
Technical Paper

Knock Threshold Detection in Turbocharged Gasoline Engine Using EEMD and Bispectrum

2016-04-05
2016-01-0643
Knock threshold detection is the key of closed loop control of ignition in gasoline engine, and it is also the difficult point in knock measurement. In this paper, an investigation of knock detection in turbocharged gasoline engine using bispectrum slice and ensemble empirical mode decomposition (EEMD) based on the engine cylinder head vibration signals is presented. By adding some finite amplitude Gaussian white noises to the signal, EEMD keeps the signal continuous in different time span, and therefore the mode mixing inhering in the classical empirical mode decomposition (EMD) method is alleviated. Power spectrum density (PSD) estimation is used to determine the band range of the resonance frequency generated by knock component. EEMD is used to decompose the original signals, the time-frequency characteristics of the Intrinsic Mode Functions (IMF) are analyzed using Continues Wavelet Transform (CWT) due to its excellent time-frequency resolution.
Technical Paper

Study of Polycyclic Aromatic Hydrocarbons Evolution Processing in GDI Engines Using TRF-PAH Chemical Kinetic Mechanism

2016-04-05
2016-01-0690
In the present study, we developed a reduced TRF-PAH chemical reaction mechanism consisted of iso-octane, n-heptane and toluene as gasoline surrogate fuels for GDI (gasoline direct injection) spark ignition engine combustion simulation. The reduced mechanism consists of 85 species and 232 reactions including 17 species and 40 reactions related to the PAHs (polycyclic aromatic hydrocarbons) formation. The present mechanism was validated for extensive validations with experimental ignition delay times in shock tubes and laminar flame speeds in flat flame adiabatic burner for gasoline/air and TRF/air mixtures under various pressures, temperatures and equivalence ratios related to engine conditions. Good agreement was achieved for most of the measurement. Mole fraction profiles of PAHs for n-heptane flame were also simulated and the experimental trends were reproduced well. The vapor-phase and particulate-bound PAHs existed in GDI engine exhaust were sampled and analyzed by GC-MS.
Technical Paper

A Hybrid Combustion Control Strategy for Heavy Duty Diesel Engines Based on the Technologies of Multi-Pulse Injections, Variable Boost Pressure and Retarded Intake Valve Closing Timing

2011-04-12
2011-01-1382
Combustion control strategy for high efficiency and low emissions in a heavy duty (H D) diesel engine was investigated experimentally in a single cylinder test engine with a common rail fuel system, EGR (Exhaust Gas Recirculation) system, boost system and retarded intake valve closing timing actuator. For the operation loads of IMEPg (Gross Indicated Mean Effective Pressure) less than 1.1 MPa the low temperature combustion (LTC) with high rate of EGR was applied. The fuel injection modes of either single injection or multi-pulse injections, boost pressure and retarded intake valve closing timing (RIVCT) were also coupled with the engine operation condition loads for high efficiency and low emissions. A higher boost pressure played an important role in improving fuel efficiency and obtaining ultra-low soot and NOx emissions.
Technical Paper

Using Multiple Injection Strategies in Diesel PCCI Combustion: Potential to Extend Engine Load, Improve Trade-off of Emissions and Efficiency

2011-04-12
2011-01-1396
The Premixed Charge Compression Ignition (PCCI) engine has the potential to reduce soot and NOx emissions while maintaining high thermal efficiency at part load conditions. However, several technical barriers must be overcome. Notably ways must be found to control ignition timing, expand its limited operation range and limit the rate of heat release. In this paper, comparing with single fuel injection, the superiority of multiple-pulse fuel injection in extending engine load, improve emissions and thermal efficiency trade-off using high exhaust gas recirculation (EGR) and boost in diesel PCCI combustion is studied by engine experiments and simulation study. It was found that EGR can delay the start of hot temperature reactions, reduce the reaction speed to avoid knock combustion in high load, is a very useful method to expand high load limit of PCCI. EGR can reduce the NOx emission to a very small value in PCCI.
Technical Paper

Selection of Swirl Ratio in Diesel Engines Based on Droplet Trajectory Analysis

2017-03-28
2017-01-0813
Matching fuel injection and airflow motion is critical for the optimization of fuel-air mixing and combustion process in diesel engines. In this study, the effects of swirl flow on liquid droplet motion and the selection of swirl ratio, which are known as the major concern in organizing airflow motion, were investigated based on theoretical analysis of droplet trajectories. The evaporating droplets with various initial conditions are assumed to be transported in a solid-body-like swirl field, and their trajectories were derived based on force analysis. To evaluate fuel-air mixing quality, a new parameter with respect to fuel vapor distribution was proposed. Based on this methodology, the effects of swirl velocity, droplet size, as well as liquid-gas density ratio on droplet trajectory were discussed under diesel-engine-like boundary conditions.
Technical Paper

Numerical Study on a High Efficiency Gasoline Reformed Molecule HCCI Combustion Using Exergy Analysis

2017-03-28
2017-01-0735
In this study, the characteristics and the advantages on engine performance of the reformed molecule HCCI (RM-HCCI) combustion fueled with gasoline were investigated by exergy analysis. The processes of fuel reforming and the closed portion of the engine cycle were simulated integrated with chemical kinetics mechanism at varied compression ratio (CR) and constant speed conditions. Results showed the fuel reforming under high temperature and oxygen-free condition by the exhaust heat recovery and electric heating assistance could drive gasoline to transform to the small-molecule gas fuels, meanwhile enhanced the chemical exergy of the fuel. The reformed fuel contributed to extending ignition delay, so less dilution required in RM-HCCI engine when expanding high load compared with gasoline HCCI engine. Thus, RM-HCCI engine could achieve higher load than gasoline HCCI engine, with the improvements by 12%, 26%, and 31% at CR17, CR19, and CR21, respectively.
Technical Paper

Experimental Comparison between Stratified Flame Ignition and Micro Flame Ignition in a Gasoline SI-CAI Hybrid Combustion Engine

2017-03-28
2017-01-0737
Controlled Auto-Ignition (CAI), also known as Homogeneous charge compression ignition (HCCI), has been the subject of extensive research because of their ability to providing simultaneous reduction in fuel consumption and NOx emissions in a gasoline engine. However, due to its limited operation range, combustion mode switching between CAI and spark ignition (SI) combustion is essential to cover the overall operational range of a gasoline engine for passenger car applications. Previous research has shown that the SI-CAI hybrid combustion has the potential to control the ignition timing and heat release process during both steady state and transient operations. However, it was found that the SI-CAI hybrid combustion process is often characterized with large cycle-to-cycle variations, due to the flame instability at high dilution conditions.
Technical Paper

Potentials of External Exhaust Gas Recirculation and Water Injection for the Improvement in Fuel Economy of a Poppet Valve 2-Stroke Gasoline Engine Equipped with a Two-Stage Serial Charging System

2018-04-03
2018-01-0859
Engine downsizing is one of the most effective means to improve the fuel economy of spark ignition (SI) gasoline engines because of lower pumping and friction losses. However, the occurrence of knocking combustion or even low-speed pre-ignition at high loads is a severe problem. One solution to significantly increase the upper load range of a 4-stroke gasoline engine is to use 2-stroke cycle due to the double firing frequency at the same engine speed. It was found that a 0.7 L two-cylinder 2-stroke poppet valve gasoline engine equipped with a two-stage serial boosting system, comprising a supercharger and a downstream turbocharger, could replace a 1.6 L naturally aspirated 4-stroke gasoline engine in our previous research, but its fuel economy was close to that of the 4-stroke engine at upper loads due to knocking combustion.
Technical Paper

Kinetic Modeling of Soot Formation with Highlight in Effects of Surface Activity on Soot Growth for Diesel Engine Partially Premixed Combustion

2013-04-08
2013-01-1104
In this study, Partially Premixed Combustion (PPC) on a modified heavy-duty diesel engine was realized by hybrid combustion control strategy with flexible fuel injection timing, injection rate pattern modulation and high ratio of exhaust gas recirculation (EGR) at different engine loads. It features with different degrees of fuel/air mixture stratifications. The very low soot emissions of the experiments called for further understanding on soot formation mechanism so that to promote the capability of prediction. A new soot model was developed with highlight in effects of surface activity on soot growth for soot formation prediction in partially premixed combustion diesel engine. According to previous results from literatures on the importance of acetylene as growth specie of PAH and soot surface growth, a gas-phase reduced kinetic model of acetylene formation was developed and integrated into the new soot model.
Technical Paper

Co-Simulation and Analysis on Aerodynamic Noise at the Engine Inlet

2018-04-03
2018-01-0686
As the intake noise is a major contributing factor to automotive passenger compartment noise levels, it has received much more attention than before. Because the plastic manifolds could induce and transmit more noise owing to their lighter weight, aerodynamic noise has become a more serious problem in plastic manifolds than in conventional aluminum-made manifolds. Due to the complexity of aerodynamic noise of the intake system, it is difficult to predict the noise precisely, especially for the part whose frequency is higher than 1000 Hz. This paper introduces a new co-simulation method to simulate the aerodynamic noise at the engine inlet. With the coupled simulation between two programs, GT-Power and Fluent, it could simulate the gas flow inside the engine intake system, under the actual running condition of engine.
Technical Paper

Effects of Late Intake Valve Closing Timing on Thermal Efficiency and Emissions Based on a Two-stage Turbocharger Diesel Engine

2013-04-08
2013-01-0276
This paper investigated the effects of late intake valve closing timing (IVCT) and two-stage turbocharger systems matching based on partially premixed combustion strategy. Tests were performed on a 12-liter L6 heavy-duty engine at loads up to 10 bar BMEP at various speed. IVCT (where IVCT is -80°ATDC, -65°ATDC and -55°ATDC at 1300 rpm, 1600 rpm and 1900 rpm, respectively) lowered the intake and exhaust difference pressure, reducing pumping loss and improved the effective thermal efficiency by 1%, 1.5% and 2% at BMEP of 5 bar at 1300 rpm, 1600 rpm and 1900 rpm. For certain injection timings and EGR rate, it is found that a significant reduction in soot (above 30%) and NOx (above 70%) emissions by means of IVCT. This is due to that IVCT lowered effective compression ratio and temperature during the compression stroke, resulting in a longer ignition delay as the fuel mixed more homogeneous with the charge air ahead of ignition.
Technical Paper

A Three-Dimensional Flame Reconstruction Method for SI Combustion Based on Two-Dimensional Images and Geometry Model

2022-03-29
2022-01-0431
A feasible method was developed to reconstruct the three-dimensional flame surface of SI combustion based on 2D images. A double-window constant volume vessel was designed to simultaneously obtain the side and bottom images of the flame. The flame front was reconstructed based on 2D images with a slicing model, in which the flame characteristics were derived by slicing flame contour modeling and flame-piston collision area analysis. The flame irregularity and anisotropy were also analyzed. Two different principles were used to build the slicing model, the ellipse hypothesis modeling and deep learning modeling, in which the ellipse hypothesis modeling was applied to reconstruct the flame in the optical SI engine. And the reconstruction results were analyzed and discussed. The reconstruction results show that part of the wrinkled and folded structure of the flame front in SI engines can be revealed based on the bottom view image.
Technical Paper

Multiple Engine Faults Detection Using Variational Mode Decomposition and GA-K-means

2022-03-29
2022-01-0616
As a critical power source, the diesel engine is widely used in various situations. Diesel engine failure may lead to serious property losses and even accidents. Fault detection can improve the safety of diesel engines and reduce economic loss. Surface vibration signal is often used in non-disassembly fault diagnosis because of its convenient measurement and stability. This paper proposed a novel method for engine fault detection based on vibration signals using variational mode decomposition (VMD), K-means, and genetic algorithm. The mode number of VMD dramatically affects the accuracy of extracting signal components. Therefore, a method based on spectral energy distribution is proposed to determine the parameter, and the quadratic penalty term is optimized according to SNR. The results show that the optimized VMD can adaptively extract the vibration signal components of the diesel engine. In the actual fault diagnosis case, it is difficult to obtain the data with labels.
Technical Paper

Effects of Combination and Orientation of Intake Ports on Swirl Motion in Four-Valve DI Diesel Engines

2000-06-19
2000-01-1823
Two identical helical ports and two identical directed ports were arranged into four different kinds of port combinations: helical and helical, helical and directed, directed and directed, directed and helical. Each port can rotate freely around its valve axis. The swirl ratio and the flow coefficient for each combination of intake ports were tested on a steady flow rig when both ports were positioned in different orientations around its valve axis. Two parameters, the loss rate of mean flow coefficient and the loss rate of angular momentum, were defined to describe the degree of interference between the flows discharging from the two adjacent intake valves. Velocity distribution in the vicinity and circumference of the intake valves was measured using Hot Wire Anemometer to further study the intake flow interference for different port combinations.
Technical Paper

Effect of the Swirl Control Valve on the In-Cylinder Air Motion in a Four-Valve SI Engine

2000-06-19
2000-01-2058
The effect of the Swirl Control Valve (SCV) on the in-cylinder flow characteristics was studied using LDA measurement in a single cylinder four-valve spark ignition engine with a SCV. Mean velocity, root-mean-square (rms) velocity fluctuation, and frequency structure of the velocity fluctuation were analyzed to illustrate flow features under the SCV open and closed conditions. The results show that when the SCV is open, large-scale flow structure in the cylinder is mainly tumble vortex, which will distort and break up during the late stage of the compression stroke. The rms velocity fluctuation increases during the compression process and reaches its maximum at certain crank angle before TDC. Larger scale eddies and lower frequency structures in the flow field become more near the end of compression process due to breakup of the tumble. The rms velocity fluctuation in the combustion chamber is roughly uniform at the end of the compression process.
Technical Paper

Characteristics of Rail Pressure Fluctuations under Two-Injection Conditions and the Control Strategy Based on ANN

2017-10-08
2017-01-2212
High-pressure common rail (HPCR) fuel injection system is the most widely used fuel system in diesel engines. However, when multiple injection strategy is used, the pressure wave fluctuation is un-avoided due to the opening and closing of the needle valve which will affect the subsequent fuel injection and combustion characteristics. In this paper, several parameters: injection pressure, injection intervals, the main injection pulse widths are investigated on a common rail fuel injection test rig with two injection pulses to explore their effect on the fuel injection rate and fuel quantity. The result showed that the longer injection interval between the pilot and main injections will lead to a rail pressure drop at the beginning of the main injection so that a smaller fuel quantity will be delivered. The main injection pulse width also influences fuel injection rate and the main fuel quantity.
X